
Exercice n°1: (7 points)

Le graphe ci-dessus représente deux courbes de deux fonctions f et g définies sur IR. En utilisant ce graphe répondre à ces questions.

- 1) Déterminer f(-1), f(1), g(0) et g(2).
- 2) Déterminer les antécédents de -1 par la fonction f.
- 3) Résoudre l'équation : g(x) = 2.
- 4) Résoudre : $f(x) \le g(x)$
- 5) On suppose que les points A(-0.4;0) et B(2.4;0) appartient à la courbe de f. Dresser le tableau de signe de f.
- 6) a) Dresser le tableau de variation de g.
 - b) Déterminer les extrémums de g.

Exercice n°2:(7 points)

Soit la suite U définie sur IN par $\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{1}{3}U_n + 2 & \textit{pourtout} \quad n \in \mathit{IN} \end{cases}$

- 1) Calculer U_1 et U_2 . La suite U est-elle arithmétique ? est-elle géométrique ?
- 2) Soit la suite V définie sur IN par : $V_{\scriptscriptstyle n} = U_{\scriptscriptstyle n} 3$.
 - a) Montrer que V est une suite géométrique de raison $\frac{1}{3}$ puis calculer V_0 .
 - b) Exprimer $V_{\scriptscriptstyle n}\;$ puis $U_{\scriptscriptstyle n}\;$ en fonction de n.

c) Calculer $\lim_{n\to +\infty}V_n$ puis en déduire $\lim_{n\to +\infty}U_n$. 3) a) Calculer $S_1=V_0+V_1+\cdots+V_n$ puis en déduire $S_2=U_0+U_1+\cdots+U_n$.

3) a) Calculer
$$S_1 = V_0 + V_1 + \cdots + V_n$$
 puis en déduire

$$S_2 = U_0 + U_1 + \dots + U_n.$$

b) Calculer $\lim_{n\to+\infty} S_2$

Exercice n°3: (6 points)

Les parties de cet exercice sont indépendantes

I) Le plan est munie d'un repère orthonormé $(O, \overrightarrow{OA}, \overrightarrow{OB})$ Soit (C) le cercle trigonométrique.

Soit M et N deux points du cercle (C) et tel que $mes(\overline{AM}) \equiv \frac{221\pi}{3}[2\pi]$ et $mes(\overline{AN}) \equiv \frac{-2019\pi}{4}[2\pi]$

- 1) Donner la mesure principale de chacun des arcs orientés AM et AN.
- 2) Placer les points M et N sur le cercle (C).
- II) Calculer ces expressions:

$$A = \cos(x - 21\pi) + \cos(10\pi - x) + \sin(3\pi - x) + \sin(-10\pi + x)$$

B =
$$cos^2 \left(\frac{\pi}{12}\right) + cos^2 \left(\frac{5\pi}{12}\right) + cos^2 \left(\frac{7\pi}{12}\right) + cos^2 \left(\frac{11\pi}{12}\right)$$

- III) soit f(x) = cos(2x) cosx
 - 1) Calculer f $(\frac{3\pi}{4})$ et f $(\frac{5\pi}{6})$
 - 2) Montrer que f(x) = $2 cos^2 x cos x 1$
 - 3) Résoudre dans $[0,2\pi]$ l'équation f(x) = 0.

Bon travail